Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 932: 173044, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723971

RESUMEN

Siderophores are small molecules of organic nature, released by bacteria to chelate iron from the surrounding environment and subsequently incorporate it into the cytoplasm. In addition to iron, these secondary metabolites can complex with a wide variety of metals, which is why they are commonly studied in the environment. Heavy metals can be very toxic when present in large amounts on the planet, affecting public health and all living organisms. The pollution caused by these toxic metals is increasing, and therefore it is urgent to find practical, sustainable, and economical solutions for remediation. One of the strategies is siderophore-assisted bioremediation, an innovative and advantageous alternative for various environmental applications. This research highlights the various uses of siderophores and metallophores in the environment, underscoring their significance to ecosystems. The study delves into the utilization of siderophores and metallophores in both marine and terrestrial settings (e.g. bioremediation, biocontrol of pathogens, and plant growth promotion), such as bioremediation, biocontrol of pathogens, and plant growth promotion, providing context for the different instances outlined in the existing literature and highlighting their relevance in each field. The study delves into the structures and types of siderophores focusing on their singular characteristics for each application and methodologies used. Focusing on recent developments over the last two decades, the opportunities and challenges associated with siderophores and metallophores applications in the environment were mapped to arm researchers in the fight against environmental pollution.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38399424

RESUMEN

Global health faces a significant issue with the rise of infectious diseases caused by bacteria, fungi, viruses, and parasites. The increasing number of multi-drug resistant microbial pathogens severely threatens public health worldwide. Antibiotic-resistant pathogenic bacteria, in particular, present a significant challenge. Therefore, there is an urgent need to identify new potential antimicrobial targets and discover new chemical entities that can potentially reverse bacterial resistance. The main goal of this research work was to create and develop a library of 3,6-disubstituted xanthones based on twin drugs and molecular extension approaches to inhibit the activity of efflux pumps. The process involved synthesizing 3,6-diaminoxanthones through the reaction of 9-oxo-9H-xanthene-3,6-diyl bis(trifluoromethanesulfonate) with various primary and secondary amines. The resulting 3,6-disubstituted xanthone derivatives were then tested for their in vitro antimicrobial properties against a range of pathogenic strains and their efficacy in inhibiting the activity of efflux pumps, biofilm formation, and quorum-sensing. Several compounds have exhibited effective antibacterial properties against the Gram-positive bacterial species tested. Xanthone 16, in particular, has demonstrated exceptional efficacy with a remarkable MIC of 11 µM (4 µg/mL) against reference strains Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212, and 25 µM (9 µg/mL) against methicillin-resistant S. aureus 272123. Furthermore, some derivatives have shown potential as antibiofilm agents in a crystal violet assay. The ethidium bromide accumulation assay pinpointed certain compounds inhibiting bacterial efflux pumps. The cytotoxic effect of the most promising compounds was examined in mouse fibroblast cell line NIH/3T3, and two monoamine substituted xanthone derivatives with a hydroxyl substituent did not exhibit any cytotoxicity. Overall, the nature of the substituent was critical in determining the antimicrobial spectra of aminated xanthones.

3.
Molecules ; 28(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894682

RESUMEN

The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on host cell surface glycans to facilitate interaction with the angiotensin-converting enzyme 2 (ACE-2) receptor. This interaction between ACE2 and the spike protein is a gateway for the virus to enter host cells and may be targeted by antiviral drugs to inhibit viral infection. Therefore, targeting the interaction between these two proteins is an interesting strategy to prevent SARS-CoV-2 infection. A library of glycan mimetics and derivatives was selected for a virtual screening performed against both ACE2 and spike proteins. Subsequently, in vitro assays were performed on eleven of the most promising in silico compounds to evaluate: (i) their efficacy in inhibiting cell infection by SARS-CoV-2 (using the Vero CCL-81 cell line as a model), (ii) their impact on ACE2 expression (in the Vero CCL-81 and MDA-MB-231 cell lines), and (iii) their cytotoxicity in a human lung cell line (A549). We identified five synthetic compounds with the potential to block SARS-CoV-2 infection, three of them without relevant toxicity in human lung cells. Xanthene 1 stood out as the most promising anti-SARS-CoV-2 agent, inhibiting viral infection and viral replication in Vero CCL-81 cells, without causing cytotoxicity to human lung cells.


Asunto(s)
Antineoplásicos , COVID-19 , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Unión Proteica , Antineoplásicos/farmacología , Antivirales/farmacología
4.
Antibiotics (Basel) ; 12(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37237825

RESUMEN

Drug resistance is rising to alarming levels, constituting one of the major threats to global health. The overexpression of efflux pumps and the formation of biofilms constitute two of the most common resistance mechanisms, favoring the virulence of bacteria. Therefore, the research and development of effective antimicrobial agents that can also counteract resistance mechanisms are extremely important. Pyrazino[2,1-b]quinazoline-3,6-diones, from marine and terrestrial organisms and simpler synthetic analogues, were recently disclosed by us as having relevant antimicrobial properties. In this study, using a multi-step approach, it was possible to synthesize new pyrazino[2,1-b]quinazoline-3,6-diones focusing on compounds with fluorine substituents since, to the best of our knowledge, the synthesis of fluorinated fumiquinazoline derivatives had not been attempted before. The new synthesized derivatives were screened for antibacterial activity and, along with previously synthetized pyrazino[2,1-b]quinazoline-3,6-diones, were characterized for their antibiofilm and efflux-pump-inhibiting effects against representative bacterial species and relevant resistant clinical strains. Several compounds showed relevant antibacterial activity against the tested Gram-positive bacterial species with MIC values in the range of 12.5-77 µM. Furthermore, some derivatives showed promising results as antibiofilm agents in a crystal violet assay. The results of the ethidium bromide accumulation assay suggested that some compounds could potentially inhibit bacterial efflux pumps.

5.
J Med Chem ; 66(1): 32-70, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36586133

RESUMEN

With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and ß-lactamase activated prodrugs.


Asunto(s)
Antibacterianos , Sideróforos , Sideróforos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química
6.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362104

RESUMEN

Natural products have attracted attention due to their safety and potential effectiveness as anti-inflammatory drugs. Particularly, xanthones owning a unique 9H-xanthen-9-one scaffold, are endowed with a large diversity of medical applications, including antioxidant and anti-inflammatory activities, because their core accommodates a vast variety of substituents at different positions. Among others, α- and γ-mangostin are the major known xanthones purified from Garcinia mangostana with demonstrated anti-inflammatory and antioxidant effects by in vitro and in vivo modulation of the Nrf2 (nuclear factor erythroid-derived 2-like 2) pathway. However, the main mechanism of action of xanthones and their derivatives is still only partially disclosed, and further investigations are needed to improve their potential clinical outcomes. In this light, a library of xanthone derivatives was synthesized and biologically evaluated in vitro on human macrophages under pro-inflammatory conditions. Furthermore, structure-activity relationship (SAR) studies were performed by means of matched molecular pairs (MMPs). The data obtained revealed that the most promising compounds in terms of biocompatibility and counteraction of cytotoxicity are the ones that enhance the Nrf2 translocation, confirming a tight relationship between the xanthone scaffold and the Nrf2 activation as a sign of intracellular cell response towards oxidative stress and inflammation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Xantonas , Humanos , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Macrófagos , Estrés Oxidativo , Xantonas/farmacología
7.
Bioorg Med Chem Lett ; 67: 128743, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447343

RESUMEN

Antimicrobial resistance arises due to several adaptation mechanisms, being the overexpression of efflux pumps (EPs) one of the most worrisome. In bacteria, EPs can also play important roles in virulence, quorum-sensing (QS) and biofilm formation. To identify new potential antimicrobial adjuvants, a library of diarylpentanoids and chalcones was synthesized and tested. These compounds presented encouraging results in potentiating the activity of antimicrobials, being diarylpentanoid 13 the most promising. Compounds 9, 13, 16, 19, 22, and 23 displayed EP inhibitory effect, mainly in Staphylococcus aureus 272123. Compounds 13, 19, 22, and 23 exhibited inhibitory effect on biofilm formation in S. aureus 272,123 while 13 and 22 inhibited QS in the pair Sphingomonas paucimobilis Ezf 10-17 and Chromobacterium violaceum CV026. The overall results, demonstrated that diarylpentanoid 13 and chalcone 22 were active against all the resistance mechanisms tested, suggesting their potential as antimicrobial adjuvants.


Asunto(s)
Chalcona , Chalconas , Antibacterianos/farmacología , Biopelículas , Chalcona/farmacología , Chalconas/farmacología , Chromobacterium , Percepción de Quorum , Staphylococcus aureus
8.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35337168

RESUMEN

The photoprotective skincare segment is in high demand to meet consumer concerns on UV-induced skin damage, with a recent trend towards sunscreen alternatives with a natural origin. In this study, the use of natural ingredients, either from terrestrial or marine origin, in a panel of 444 sunscreen commercial formulations (2021) was analyzed. Ingredients from terrestrial organisms represent the large majority found in the analyzed sunscreen formulations (48%), whereas marine ingredients are present only in 13% of the analyzed products. A deeper analysis regarding the most prevalent families of ingredients from terrestrial and marine organisms used as top ingredients is also presented, as well as their mechanisms of action. This study provides an up-to-date overview of the sunscreen market regarding the use of natural ingredients, which is of relevance for scientists involved in the development of new sunscreens to identify opportunities for innovation.

9.
ACS Med Chem Lett ; 13(2): 225-235, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178179

RESUMEN

Malaria, leishmaniasis, and sleeping sickness are potentially fatal diseases that represent a real health risk for more than 3,5 billion people. New antiparasitic compounds are urgent leading to a constant search for novel scaffolds. Herein, pyrazino[2,1-b]quinazoline-3,6-diones containing indole alkaloids were explored for their antiparasitic potential against Plasmodium falciparum, Trypanosoma brucei, and Leishmania infantum. The synthetic libraries furnished promising hit compounds that are species specific (7, 12) or with broad antiparasitic activity (8). Structure-activity relationships were more evident for Plasmodium with anti-isomers (1S,4R) possessing excellent antimalarial activity, while the presence of a substituent on the anthranilic acid moiety had a negative effect on the activity. Hit compounds against malaria did not inhibit ß-hematin, and in silico studies predicted these molecules as possible inhibitors for prolyl-tRNA synthetase both from Plasmodium and Leishmania. These results disclosed a potential new chemotype for further optimization toward novel and affordable antiparasitic drugs.

10.
Mar Drugs ; 19(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34822509

RESUMEN

Biofouling, which occurs when certain marine species attach and accumulate in artificial submerged structures, represents a serious economic and environmental issue worldwide. The discovery of new non-toxic and eco-friendly antifouling systems to control or prevent biofouling is, therefore, a practical and urgent need. In this work, the antifouling activity of a series of 24 xanthones, with chemical similarities to natural products, was exploited. Nine (1, 2, 4, 6, 8, 16, 19, 21, and 23) of the tested xanthones presented highly significant anti-settlement responses at 50 µM against the settlement of mussel Mytilus galloprovincialis larvae and low toxicity to this macrofouling species. Xanthones 21 and 23 emerged as the most effective larval settlement inhibitors (EC50 = 7.28 and 3.57 µM, respectively). Additionally, xanthone 23 exhibited a therapeutic ratio (LC50/EC50) > 15, as required by the US Navy program attesting its suitability as natural antifouling agents. From the nine tested xanthones, none of the compounds were found to significantly inhibit the growth of the marine biofilm-forming bacterial strains tested. Xanthones 4, 6, 8, 16, 19, 21, and 23 were found to be non-toxic to the marine non-target species Artemia salina (<10% mortality at 50 µM). Insights on the antifouling mode of action of the hit xanthones 21 and 23 suggest that these two compounds affected similar molecular targets and cellular processes in mussel larvae, including that related to mussel adhesion capacity. This work exposes for the first time the relevance of C-1 aminated xanthones with a 3,4-dioxygenated pattern of substitution as new non-toxic products to prevent marine biofouling.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Xantonas/farmacología , Animales , Organismos Acuáticos , Biopelículas/efectos de los fármacos , Bivalvos/efectos de los fármacos , Larva/efectos de los fármacos , Xantonas/química
11.
Mar Drugs ; 19(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34436303

RESUMEN

Marine ingredients are a source of new chemical entities with biological action, which is the reason why they have gained relevance in the cosmetic industry. The facial care category is the most relevant in this industry, and within it, the sensitive skin segment occupies a prominent position. This work analyzed the use of marine ingredients in 88 facial cosmetics for sensitive skin from multinational brands, as well as their composition and the scientific evidence that supports their efficacy. Marine ingredients were used in 27% of the cosmetic products for sensitive skin and included the species Laminaria ochroleuca, Ascophyllum nodosum (brown macroalgae), Asparagopsis armata (red macroalgae), and Chlorella vulgaris (microalgae). Carotenoids, polysaccharides, and lipids are the chemical classes highlighted in these preparations. Two ingredients, namely the Ascophyllum nodosum extract and Asparagopsis armata extracts, present clinical evidence supporting their use for sensitive skin. Overall, marine ingredients used in cosmetics for sensitive skin are proposed to reduce skin inflammation and improve the barrier function. Marine-derived preparations constitute promising active ingredients for sensitive skin cosmetic products. Their in-depth study, focusing on the extracted metabolites, randomized placebo-controlled studies including volunteers with sensitive skin, and the use of extraction methods that are more profitable may provide a great opportunity for the cosmetic industry.


Asunto(s)
Cosméticos , Fármacos Dermatológicos/uso terapéutico , Cara , Hipersensibilidad/tratamiento farmacológico , Microalgas , Algas Marinas , Animales , Organismos Acuáticos , Humanos , Industrias
12.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451799

RESUMEN

Sensitive skin is characterized by symptoms of discomfort when exposed to environmental factors. Peptides are used in cosmetics for sensitive skin and stand out as active ingredients for their ability to interact with skin cells by multiple mechanisms, high potency at low dosage and the ability to penetrate the stratum corneum. This study aimed to analyze the composition of 88 facial cosmetics for sensitive skin from multinational brands regarding usage of peptides, reviewing their synthetic pathways and the scientific evidence that supports their efficacy. Peptides were found in 17% of the products analyzed, namely: acetyl dipeptide-1 cetyl ester, palmitoyl tripeptide-8, acetyl tetrapeptide-15, palmitoyl tripeptide-5, acetyl hexapeptide-49, palmitoyl tetrapeptide-7 and palmitoyl oligopeptide. Three out of seven peptides have a neurotransmitter-inhibiting mechanism of action, while another three are signal peptides. Only five peptides present evidence supporting their use in sensitive skin, with only one clinical study including volunteers having this condition. Noteworthy, the available data is mostly found in patents and supplier brochures, and not in randomized placebo-controlled studies. Peptides are useful active ingredients in cosmetics for sensitive skin. Knowing their efficacy and synthetic pathways provides meaningful insight for the development of new and more effective ingredients.

13.
Molecules ; 26(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34443658

RESUMEN

In recent decades, fungi-derived naturally occurring quinazolines have emerged as potential drug candidates. Nevertheless, most studies are conducted for bioactivity assays, and little is known about their absorption, distribution, metabolism, and elimination (ADME) properties. To perform metabolic studies, the synthesis of the naturally occurring quinazolinone, fiscalin B (1), and its chloro derivative, 4-((1H-indol-3-yl)methyl)-8,10-dichloro-1-isobutyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (2), disclosed as an antibacterial agent, was performed in a gram scale using a microwave-assisted polycondensation reaction with 22% and 17% yields, respectively. The structure of the non-natural (+)-fiscalin B was established, for the first time, by X-ray crystallography as (1R,4S)-1, and the absolute configuration of the naturally occurring fiscalin B (-)-1 was confirmed by comparison of its calculated and experimental electronic circular dichroism (ECD) spectra as (1S,4R)-1. in vitro metabolic studies were monitored for this class of natural products for the first time by ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS). The metabolic characteristics of 1 and 2 in human liver microsomes indicated hydration and hydroxylation mass changes introduced to the parent drugs.


Asunto(s)
Antibacterianos/metabolismo , Productos Biológicos/metabolismo , Metaboloma/genética , Pirazinas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Cristalografía por Rayos X , Hongos/efectos de los fármacos , Humanos , Indoles/síntesis química , Indoles/química , Indoles/metabolismo , Espectrometría de Masas , Estructura Molecular , Pirazinas/síntesis química , Pirazinas/química , Quinazolinas/síntesis química , Quinazolinas/química , Quinazolinas/metabolismo , Estereoisomerismo
14.
Antibiotics (Basel) ; 10(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069329

RESUMEN

The emergence of multidrug and extensively drug-resistant pathogenic bacteria able to resist to the action of a wide range of antibiotics is becoming a growing problem for public health. The search for new compounds with the potential to help in the reversion of bacterial resistance plays an important role in current medicinal chemistry research. Under this scope, bacterial efflux pumps are responsible for the efflux of antimicrobials, and their inhibition could reverse resistance. In this study, the multidrug resistance reversing activity of a series of xanthones was investigated. Firstly, docking studies were performed in the AcrAB-TolC efflux pump and in a homology model of the NorA pump. Then, the effects of twenty xanthone derivatives on bacterial growth were evaluated in Staphylococcus aureus 272123 and in the acrA gene-inactivated mutant Salmonella enterica serovar Typhimurium SL1344 (SE03). Their efflux pump inhibitory properties were assessed using real-time fluorimetry. Assays concerning the activity of these compounds towards the inhibition of biofilm formation and quorum sensing have also been performed. Results showed that a halogenated phenylmethanamine xanthone derivative displayed an interesting profile, as far as efflux pump inhibition and biofilm formation were concerned. To the best of our knowledge, this is the first report of xanthones as potential efflux pump inhibitors.

15.
Arch Pharm (Weinheim) ; 354(10): e2100150, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34105191

RESUMEN

A miniaturized microsequential injection/lab-on-valve (µSIA-LOV) system was developed and shown to be a useful alternative to perform inhibitory studies on acetylcholinesterase. These studies are essential for the evaluation of the potential therapeutic effect of drugs commonly used in the treatment of Alzheimer's disease. Donepezil, galantamine, and rivastigmine were tested, in addition to compounds based on the xanthone scaffold. Four of these xanthone derivatives were identified as having EC50 values between 676 and 4466 µmol/l, showing a potential inhibitory effect higher than the clinical agent rivastigmine. The developed automatic system added advantages of reduction of reagents and sample consumption (around 55 µl per analysis), lower cost per analysis, and the generation of less waste (around 1.2 ml per analysis). The µSIA-LOV system is also a robust, rapid, reliable, and simple system to use. Docking studies suggested a possible mode of interaction with the target acetylcholinesterase protein.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Xantonas/farmacología , Animales , Inhibidores de la Colinesterasa/química , Donepezilo/farmacología , Electrophorus , Análisis de Inyección de Flujo/métodos , Galantamina/farmacología , Humanos , Reproducibilidad de los Resultados , Rivastigmina/farmacología , Relación Estructura-Actividad , Xantonas/química
16.
Molecules ; 26(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467544

RESUMEN

This work reviews the contributions of the corresponding author (M.M.M.P.) and her research group to Medicinal Chemistry concerning the isolation from plant and marine sources of xanthone derivatives as well as their synthesis, biological/pharmacological activities, formulation and analytical applications. Although her group activity has been spread over several chemical families with relevance in Medicinal Chemistry, the main focus of the investigation and research has been in the xanthone family. Xanthone derivatives have a variety of activities with great potential for therapeutic applications due to their versatile framework. The group has contributed with several libraries of xanthones derivatives, with a variety of activities such as antitumor, anticoagulant, antiplatelet, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective, antioxidant, and multidrug resistance reversal effects. Besides therapeutic applications, our group has also developed xanthone derivatives with analytical applications as chiral selectors for liquid chromatography and for maritime application as antifouling agents for marine paints. Chemically, it has been challenging to afford green chemistry methods and achieve enantiomeric purity of chiral derivatives. In this review, the structures of the most significant compounds will be presented.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Bibliotecas de Moléculas Pequeñas/química , Xantonas/química , Xantonas/farmacología , Animales , Productos Biológicos/aislamiento & purificación , Química Farmacéutica , Humanos , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/farmacología , Xantonas/aislamiento & purificación
17.
Eur J Med Chem ; 209: 112945, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33153766

RESUMEN

Antimicrobial resistance has become a major threat to public health worldwide, as pathogenic microorganisms are finding ways to evade all known antimicrobials. Therefore, the demand for new and effective antimicrobial agents is also increasing. Natural products have always played an important role in drug discovery, either by themselves or as inspiration for synthetic compounds. The marine environment is a rich source of bioactive metabolites, and among them, tryptophan-derived alkaloids stand out for their abundance and by displaying a variety of biological activities, with antimicrobial properties being among the most significant. This review aims to reveal the potential of marine alkaloids derived from tryptophan as antimicrobial agents. Relevant examples of these compounds and their synthetic analogues reported in the last decades are presented and discussed in detail, with their mechanism of action and synthetic approaches whenever relevant. Several tryptophan-derived marine alkaloids have shown potent and promising antimicrobial activities, whether against bacteria, fungi, or virus. Synthetic approaches to many of the compounds have been developed and recent methodologies are proving to be efficient. Even though most of the studies regarding the antimicrobial activity are still preliminary, this class of compounds has proven to be worth of further investigation and may provide useful lead compounds for the development of antimicrobial agents. Overall, marine alkaloids derived from tryptophan are revealed as a valuable class of antimicrobials and molecular modifications in order to reduce the toxicity of these compounds and additional studies regarding their mechanism of action are interesting topics to explore in the future.


Asunto(s)
Alcaloides/química , Antiinfecciosos/química , Organismos Acuáticos/química , Productos Biológicos/química , Mezclas Complejas/química , Triptófano/química , Alcaloides/farmacología , Animales , Antiinfecciosos/farmacología , Productos Biológicos/farmacología , Carbolinas/química , Mezclas Complejas/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Indoles/química , Quinolinas/química , Relación Estructura-Actividad
18.
Eur J Med Chem ; 210: 113085, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33310284

RESUMEN

BACKGROUND: Xanthenes are a special class of oxygen-incorporating tricyclic compounds. Structurally related to xanthones, the presence of different substituents in position 9 strongly influences their physical and chemical properties, as well as their biological applications. This review explores the synthetic methodologies developed to obtain 9H-xanthene, 9-hydroxyxanthene and xanthene-9-carboxylic acid, as well as respective derivatives, from simple starting materials or through modification of related structures. Azaxanthenes, bioisosteres of xanthenes, are also explored. Efficiency, safety, ecological impact and applicability of the described synthetic methodologies are discussed. Synthesis of multi-functionalized derivatives with drug-likeness properties are also reported and their activities explored. Synthetic methodologies for obtaining (aza)xanthenes from simple building blocks are available, and electrochemical and/or metal free procedures recently developed arise as greener and efficient methodologies. Nonetheless, the synthesis of xanthenes through the modification of the carbonyl in position 9 of xanthones represents the most straightforward procedure to easily obtain a variety of (aza)xanthenes. (Aza)xanthene derivatives displayed biological activity as neuroprotector, antitumor, antimicrobial, among others, proving the versatility of this nucleus for different biological applications. However, in some cases their chemical structures suggest a lack of pharmacokinetic properties being associated with safety concerns, which should be overcome if intended for clinical evaluation.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Xantenos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Bacterias/efectos de los fármacos , Química Farmacéutica , Hongos/efectos de los fármacos , Humanos , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Xantenos/síntesis química , Xantenos/química
19.
Molecules ; 25(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560201

RESUMEN

Antioxidants have long been used in the cosmetic industry to prevent skin photoaging, which is mediated by oxidative stress, making the search for new antioxidant compounds highly desirable in this field. Naturally occurring xanthones are polyphenolic compounds that can be found in microorganisms, fungi, lichens, and some higher plants. This class of polyphenols has a privileged scaffold that grants them several biological activities. We have previously identified simple oxygenated xanthones as promising antioxidants and disclosed as hit, 1,2-dihydroxyxanthone (1). Herein, we synthesized and studied the potential of xanthones with different polyoxygenated patterns as skin antiphotoaging ingredients. In the DPPH antioxidant assay, two newly synthesized derivatives showed IC50 values in the same range as ascorbic acid. The synthesized xanthones were discovered to be excellent tyrosinase inhibitors and weak to moderate collagenase and elastase inhibitors but no activity was revealed against hyaluronidase. Their metal-chelating effect (FeCl3 and CuCl2) as well as their stability at different pH values were characterized to understand their potential to be used as future cosmetic active agents. Among the synthesized polyoxygenated xanthones, 1,2-dihydroxyxanthone (1) was reinforced as the most promising, exhibiting a dual ability to protect the skin against UV damage by combining antioxidant/metal-chelating properties with UV-filter capacity and revealed to be more stable in the pH range that is close to the pH of the skin. Lastly, the phototoxicity of 1,2-dihydroxyxanthone (1) was evaluated in a human keratinocyte cell line and no phototoxicity was observed in the concentration range tested.


Asunto(s)
Antioxidantes , Queratinocitos/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Piel/metabolismo , Protectores Solares , Xantonas , Antioxidantes/efectos adversos , Antioxidantes/química , Antioxidantes/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Queratinocitos/patología , Piel/patología , Envejecimiento de la Piel/efectos de la radiación , Protectores Solares/efectos adversos , Protectores Solares/química , Protectores Solares/farmacología , Rayos Ultravioleta/efectos adversos , Xantonas/efectos adversos , Xantonas/química , Xantonas/farmacología
20.
Molecules ; 25(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455828

RESUMEN

A series of thirteen xanthones 3-15 was prepared based on substitutional (appendage) diversity reactions. The series was structurally characterized based on their spectral data and HRMS, and the structures of xanthone derivatives 1, 7, and 8 were determined by single-crystal X-ray diffraction. This series, along with an in-house series of aminated xanthones 16-33, was tested for in-vitro antimicrobial activity against seven bacterial (including two multidrug-resistant) strains and five fungal strains. 1-(Dibromomethyl)-3,4-dimethoxy-9H-xanthen-9-one (7) and 1-(dibromomethyl)-3,4,6-trimethoxy-9H-xanthen-9-one (8) exhibited antibacterial activity against all tested strains. In addition, 3,4-dihydroxy-1-methyl-9H-xanthen-9-one (3) revealed a potent inhibitory effect on the growth of dermatophyte clinical strains (T. rubrum FF5, M. canis FF1 and E. floccosum FF9), with a MIC of 16 µg/mL for all the tested strains. Compounds 3 and 26 showed a potent inhibitory effect on two C. albicans virulence factors: germ tube and biofilm formation.


Asunto(s)
Antibacterianos/química , Biopelículas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Xantonas/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Cristalografía por Rayos X , Humanos , Pruebas de Sensibilidad Microbiana , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Difracción de Rayos X , Xantonas/síntesis química , Xantonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...